Technical Report No., 7
National Science Foundation Project No. GK-14191, May, 1973

MUSICOI. MANUAL, VERSION 1

(MUSical Instruction Composition Oriented Language)
for the 6400 Digital Computer

by Peter Gena

State University of New York, Buffalo, N.Y,.

Abstract: This is a manual for MUSICOL, a computer
language for composing music. The composer need not
have any knowledge of computer programming to use it,
nor must he concern himself with organizing various
amounts of data-cards with intricate, precisely
placed, nemerical values which serve as input to data-
processing routines. MUSICOL uses conventional musical
mnemonics in a free card-format. When and how
instruments, controls, chance processes, etc., act can
be specified at will, With freedom to program his own
musical ideas, the composer's personal style emerges

in the resultant composition.

i—l-t

TABLE OF CONTENTS

ABSETACE. v v v v s o o o o 4 4 e e o e o o 4 4 e i

1,

3.

MUOSICOL OVERVIEW. « ¢ ¢« o o ¢ o o o & 1
1.1 General Description

1.1.2 MUSICOL Compiler

1.1.3 MUSICOL Simulator/Output
1.2 MUSICOL Design/Memory Requirements

CODING PROCEDURES. + « « v + v o + o o + o « « . 6
2.1 MUSICOL Character Set

2.1.1 Mnemonics

2,1.2 Assigned Mnemonics

2.1.3 Expressions

2.1.4 TInteger Constants

2.2 Programming Format

2.2.1 MUSICOL Statements

2.2,2 Comments

2.2,3 1Identification Field
MUSTCOL ELEMENTS. . . + « ¢ « v « « &+ « « « « » 10
3.1 Control Statements

3.1.1 START

3.1.2 END

3.1.3 DUMP

3.1.4 NOLIST

3.1.5 PUNCHI
3.2 Mnemonic Types

3.2.1 Instruments

3.2,2 Pitch

3.2.3 Attack

3.2.4 Duration

3.2.5 Dynamics

3.2.6 Octave Range

3.2,7 Timbre

3.2.8 Special Action Instructions

3.2.9 Overall Range Instructions
3.3 Parameter Generating Processes

3.3.1 Random Processes

3.3.2 Renk Order Distribution

3.3.2.1 Basic Probability Distribution
3.3.2.2 7Zipf's Law
3.3.3 Literals

ii

4, MUSICOL PROGRAMMING.« « « - « + &
4,1 Title Field
4.2 Time-Block Structure
4.3 Permanent Declarations
TIMSIG (Time Signature)
Metronomic Marking
FRQRANGE (Overall Pitch Range)
DYNRANGE (Overall Dynamics Range)
NTRANGE (Overall Durational Range)
Play/Rest
RANDOM
eter Strings
ORDERS
ROWGEN
SHUFFLE
ment Declaration
Voice Number
4.5.1,1 Voice Number Rank Orders
Pitch Range
Instrument Play/Rest Ratio
Individual Rank Order Specifications
4.5.4.1 Random Clear
Instrument Deletion and Replacement
rary Declarations
General Rank Declarations

P~
(0%

LY

B ~NoWwmbhwNe

4.4 ara

*

el SR S B IR S LI L
Ve PR WWWLWW

4,5 TInst

l—‘E Wi

w1 unn
oM

gu

m -
WMo WU

4.6

PO ol B~ B~

O O
L] L]

24

Accelerando and Ritardando (ACCEL, RITARD)
Crescendo and Diminuendo (CRESC, DIMIN)

4.6.3.1 Overall Crescendi and Diminuendi

4.6.3.2 Individual Cresc. and Dim.
4.,6.4 1Literal Lengths of Parametric Elements
4,7 Linking Together Instrument-Instructions
4.8 Programming logic; Basic Compositional Layout

5. MUSICOL PRINT-OUT INTERPRETATION.
5.1 Debugging
5.1.1 Compilation Errors
5.1.2 Simulation Errors
5.1.3 Simulator Dump
5.2 Composition-Output-Listing

6. PROPOSED MODIFICATIONS (VERSION 2).

APPENDIX A - MUSICOL Mnemonics Listings.

APPENDIX B - MUSICOL Sample Programs. « . .

45

50

53

61

APPENDIX C - MUSICOL Diagnostics,
APPENDIX D - MUSICOL Debugging. .

APPENDIX E - COMPASS Subroutines.

BIBLIOGRAPHY. . . « + « « .« « .« =

iv

91
97

. 112

132

I. MUSICOL OVERVIEW

1.1 Genersl Degeription

MUSTCOL (MUSical Instruction Compesition Oriented
Ianguage) is a language for composition using musical
mnemonica. It is 2 block~structured language with a free
format, congtructed in such a way that a great degree of
flexibility is available to the composer as he sels desired
musical paraméters in successive time-blocks. This allows
total control over the composition by either the composer
or the computer, or any degree of control in between these
two extremes,

The selection of musical parameters (pitch, duration,
range, attack, timbre, and dynamics) is generated by -
gsetting up probability distributions; or by Zipf's law, a
gstochastic principle originally developed to express the
frequency of occurrence of syntactical elements in languages
in terms of their rank orders. Each successive rank order
ig selected at a probability equal to the inversge of the
rank order, unless a zeroth-ordered stochastie process is
gpecified, in which case total randomness is generated.

Programming a composition in MUSICOL involves the
logical implementation of continuous sections where the
rank orders are used or not used in such a way as to create
the desired parametric content. If no rank order is
specified (zeroth-order), the elements are selected randomly
by a random integer generator., If the composer decideg to

gelect some parameters exactly, without references to

D

probability distributions, literals also exist. With such
parametrical versatility, a composer should be able %o
implant his own personal style on a composition, eliminating
the "salt and pepper" effect thus far common in computer
compositions that depend heavily upon stochastlic processes
to the exclusion of other controls.

& total of sixteen different instruments can be used
simultaneously. These are chosen from an operation-code
1igt of common instruments, including non-pitched percussion.
Tn addition, there are extra codes available (INSTR1, INSTRZ,
ete.) for use of instruments not included in the list, or
others (XTRA1l, XTRA2, etc.) for timbres and attacks not
contained in the list. Special routines exist for
generating lists of parametric elements.

4
g

1.1%2 MUSICOL Compiler

| Thig is written mostly in FORTRAN IV. BEach
ingtruction (in free format) is assembled into a word, which

ig divided into five or six fields depending on the

ingstruction type. Parametrie strings (order listings) are
stored in successive words containing five fields. A field

oceupies four octal digits of the CDC 60~-bit word.

Example 1.1

(PPP PP P MP MF FT7FF FFF) is represented
octalYy (see Appendix A) by:

1 > 3 4 5
/70427 7121/ 7122/7123/ 7124/
/T125/ 7126/ 7127/7130/ 7043/

-t-3 -

The Tirst digit (7) is masked onto each field to identify
parameter storage.

Por most other instructions, the word is divided into
six fields of unequal length, the last always being filled

with zeros.

Example 1.2

VIOLIN = PIZZ * 3 is represented as:

1 2 3 4 5 6
/0040/44/0025/40/0003/0000/

Tnstructions are stored as they appear in their
succegsive time-blécks for entry into the gimulator. A
complete error-detecting system providing diagnostics is
available at the compilation stage, as is avword dump, to
facilitate debugging, A compilation map is given after the
NUSTCOT source-code listing. It conmtains asgembly i: il
information and an agsigned mnemonic crogs-reference list.

(See Appendix R)

1.1.3 MUSICOT, Simulator/Output

The gimulator constructs a memory core for the
program's WUSICOT source insitructions, so that the execution
of the compositional process is determined by the programmed
specifics. The compiled code for each time-block is not
removed from the gimulation memory until the composing is
completed for the set length, as specified in the block.

Output is stored on a file ag each block is processed,

The file is dumped by an outputting program which converts

-

the octal representation to display code (see Appendix A),.
and orders the musical events according to their place in
time (measures, beats, etc.).

An error system at the execution stages provides
diagnostics for faulty program logic. If an error is
detected, the compositional process aborts for the remaining
time=-blocks. Simulation proceeds however, at the loader
level go that all loader errors can be detected on one
program-run. Any special execution conditions are listed
in the loader-execution map, which also provides the total

execution time (excluding output)., (See Appendiz B)

1.2 MUSICOL Design/Memory Requirements

The NUSICOL language is desgigned to run on the CDC-
6400 computer, but can be altered to run on any computer
with a FORTRAN IV compiler. The source program is
constructed by means of four overlays: the main-line, the
compiler, the gimulator/executor, and the output program.
The majority of the routines are written in PORTRAN IV,
exeepting a number of assembly language routines which can
be translated to other assembly languages or ito FORTRAN IV
(see Appendix E). The HUSICOL software program requires
only 33,000 octal locations when loaded as binary files onm
the CDC.

The bit configuration:of the CDC word is ag follows:

1 word contains 60 bits.

10 characiers are contained in each word,
Each character congists of 6 bits.

Example 1.3

A typical word:

— 60 bitg—-rt

OIFE wWORD

&
bits

—10 Characters —

MUSICOL operation codes contain from oneto ten
characters., Tor computers with less than ten characters
per word, those op-codes that exceed the 1imit ean be reduced
in length, Special routines and the compllation
instruction lengths can also be changed to fit a more

convenient configuration.

b

11, CODIRG PROCEDURES

2.1 WUSICOL Character Set

A11 the available FORTRAN' IV characters (A-Z, 0-9,
etc.) can be used in MUSICOL. Programming in MUSICOL
involves the use of mmemonics, expressions, and integer

constants.

2.,1.1 Mnemonics
A mmemonic contains from one to ten characters.
The use of blanks between characters is prohibited, since
they act as delimiters. For a complete list of mnemcnicsa,
see Appendix A. If a mnemonic is incorrectly spelled, a

compilation diagnostic is issued.

2.1.2 Agsigned Mnemonics

To gpeecify unlisted instruments, or timbre and
attack parametery, the special INSTR1,,,INSTRS; or XTRAL, .,
XTRALO op-codes cam be replaced with mmemonics of the
programmer's choice., The length of such assigned mnemenics
cannot exceed ten characters. Any FORTAN IV characters
except blanks and MUSICOL expressions can be uged in the

gtring.

Example 2,1

INSTR1 = BASSFLUTE
XTRA4 = SULTASTO

Assigned mnemonics camnot be replaced with already

existing operation codes.

2.1.3 Expregsions

The use of BWUSICOY expressions demotes specific
meaning to an instruction. The following is a list of
expressions and their uses. A thorough explanation of

contextual -usages is given in Chapter 4,

= denotes ranges
* gpecifies rank orders and play/rest ratios
geparates time signature values

parameter-string and voice delimiter

— N

parameter-string and voice delimiter

(]

gsets all parametrical specifications for
instruments; assigns op-codes; used for
instrument deletion and replacement; used
before all range instructions

, renders all code to the right as comments

. signifies multiple stop probabilities and
literal lengths.

2,1.4 Tnteger Congtants

Pogitive numbers or zero may act as operands

after WUSICOL expressions.

Example 2.2

TINSIG = 3/4

REST *75

QUARTER = 60

VIOLIN(1)= ARCO * 5 = 3@ -4F
CRESC = FP.232

2.2 Programming Format

A1l eighty columns of the standard "IBM" card can be
used in MUSICOL. Only columns 1, and 73 - 80 have specific

meanings when used.

2.2.1 NUSICOYL Statements

Statements (instructions) have a free format. A
card may contain as many statements as desired by the
programmer. An incomplete statement continues on the next
card, providing no operation code is split. Expressions
and blanks are recognized as delimiters {(multiple blanks
are ignored), WUSICOL statements are contained in columns

2-72.

2.2.2 Comments
Any character in the first column of a card will
allow columns 1 to 72 to be treated as comments. Similarly,
the use of & comma {,) in any column will render the
remainder of the card free from compilation. Comments are

used to cutline program legic, etc.

Example 2.3

Columng: 1 = = = o = = =« = = = = =73 =80
16— ----- SET VIOLIN PITCH RANGE (etec.)

AET VIOLTN RANGE (etec.)

..

VIOLIN = 3G - 6F+ , SET VIOLIN RANGE

Tn the last example, an instruction:is: felléwed by

a comment.

2,233 lTdentification Field

Columns 73 +o 80 are ignored by the MUSICOL
compiler, but are listed 10 places after column 72 in the
source listing. This field may be used for card numbering,

ete,.

Example 2.4

Colummn: 1 = = = = = = = = = = = =173 « 80~
ASTART TEST PIECE (etc.) TEST 001

APORDERS (PPP PP NP FT FR) TEST 002

=10~

ITI. MNMUSICOL ELEMERTS

3.1 Control Statements

MIISTCOL Control Statements operate at the compilation
level only. They are not stored for gimulation. Therefore,
no loeations are reserved in the simulated memory, and the

location counter is not incremented.

3.1,1 START

To signify the begimning of MUSICOL source
code, a START instruction must appear after column 1 on a
gingle card, before all other instructions except control
gtatements. The remainder of the card (to column 72)
cannot contain MUSICOYL instructions or control statements,
ag it is reserved for the title field (see 4.1). If the
amART-card is not properly located, a fatal error will
result and a diagnostic will be printed, aborting the
program listing.

Example 3,1

Columngs 1 = = = = = = = = = = = T2 =80
sPARTH - Title (optional)

3.1.2 END
An END gtatement follows the last MUSICOL
source-card. Any statements in the column following the
END inetruction (to 72) will be rendered as comments. An

error is iriggered if the compiler fails to encounter an

il

END statement as the last instruction.

Exanple 3,2

Columng: 1 = = = = = @« = ™ = = = = T2 - 80
ENDY Comments (optional) ‘

3.1.3 DUMP

For octal instruction listings (see Examples
1.1 and 1.2) and debugging purposes, a DUNP instruction
may be placed at any point in the program. When a
compilation error is incurred, the dump is auvtomatically
switehed on, and the octal instructions appear to the right
of the location counter, with the remaining source-code
ingtructions. The fields in which errors occur are filled
with 7's.

Tn the simulator, the contents of all the gimulated-
memory locations which store the regults of MUSICOL
instructions are dumped for each time block in which
gimulation errors occur (zee 5,1.3). A compiler dump
1isting is shown in Appendix D, as well as the simulator
dump.

3.1.4 NOLIST
A NOLIST option is available to be used once
the MUSICOL program is debugged. Part or all of the source-
1igting can be suppressed o conserve paper and compilation

time., Placement of the NOLIST gstatement before the

=12-

appropriate card will result in a suppression of the

engutng ‘source«~ligting.

3.,1,5 PUNCHI
To duplicate a sourece deck, the PUNCHI i~ ix
ingtruetion is inserted., PUNCHI can also be put into
effect at any point in the program, so that only the

desired amount of cards are produced.

DUNMP, NOLIST and PUNCHI need not be located on
geparate cards. They are admigsable alongside any MUSICOL

instructions.

3.2 HNnemonic Types

A basic explanation of the various MUSICOL mnemonies
is presented here. Their correct usage in MUSICOL
programming iz detailed in Chapter 4. Each of the
following headings contains the numbers of the mnemonics
referred to, corresponding to the complete listing in

Appendix A.

3.2.1 Instrument (Nos. 38 - 67)

The instrument mnemonics are arranged according
to family (strings, winds, brass, percussion). Any
combination may be used, but no more than sixteen ingtruments
can appesr’in a compogition during-one time block. The
non-pitched percussion instrumente (PERC1l, PERC2, etc.)
have no specifie names (except CYMBAL)., Any non-pitched

~13-

instrument(s) can be represented by these mmemonics.

3,2,2 Piteh (Nos. 1 - 17)
There are seventeen pitch mnemonics, the
twelve chromatic tones, and five enharmonic (black-key)

spellings. The + signifies a sharped pitch, thus F+ = #

gharp:; similarly - denotes a flatted pitch (i. es B=

B
flat) .

3,233 Attack (Nos. 18 - 28)
Only the most general attacks are given in the
mnemonics listing. Any desired special attacks may be
added to a program (see 2,1.2). The permanent ligt contains
three mnemonics which pertain only to stringed-insiruments
(ARCO, PIZZ, COLIEG). These are never distributed to other

ingtruments during the compositional process.

3,2.4 Duration (Noa. 68 - 78)

The duration scale runs from a dotted whole to &
thirty-second-note. 'All durations are spelled normally,
except sixteenth (16TH) and thirty-second (32ND)e A + is
used in place of a dot, therefore HAIF+ denotes a dotted
half-note,

3.2.5 Dynamicg (Nos. 79 - 86)
A1l dynamics from PPP to FFF, including MP and

¥MF are avallable. The gstandard abbreviations are used, with

w14

the exception of PT (forte), to distinguish from the pitech
F. Crescendo (CRESC) and diminuendo (DIMIN) are also listed

for individual usage.

3.2.6 Octave Range (Nos. 89 = 95)

The octave parameter is specified in the general
sense by seven mnemonics which correspond to seven octaves
of the piano (BVEl,....,8VE7). Each operatlion code
encompasses twelve pitches (A - A flat) in its designated
octave,

A reélated matter to octave range involves absolute
pitches, Thege are indicated by prefixing the piteh with

its octave number,

Example 3,3

6A=
4C

6th octave, A flat
middle C (4th octave, C)

Vore exampleg for the correct usages of octave range
éﬁ& abgolute pitch are - explained in 4,3.1, 4.4.1, 4.5.2, and
4,543

3,2,7 Timbre (Nos. 96 - 101)

Only the most common of tone color possibilities
are given as permanent operation codes., All are abbreviated
clearly in their mnemonic form., NORWAIYT (ordinaire) is used
to distinguish from NORMAYL in the attack parameter. Those
permanent mnemonics that do not apply to all instrument-

types will only be selected by the correct ones.,

=15=

Tf additional timbres are desired, they can be
employed by replacement of assigned mnemonics (XTRAL, etc.,
gee 201-2).

3,2.8 Special Action Instructions (Nos. 87, 88, 102«
105, 119, 120, 141)

For special musical actions, these operation:
codeg are used to determine texture (PIAY, REST), random
parametric content (ROWGEN, SHUFFLE, RANDOM), overall
erescendi, diminuendi, accelerandi, ritardandi, ete. A

full detailed explanation is given in 3.3.1 and Chapter 4.

3.2.9 Overall Renge Instructions (Nos. 112 - 117)

To set limits on duration, dynamies, and
frequency (pitch) ranges, and to set the time gignature and
metronomic markings, overall range instructions are
available. The time signature and metronomic markings may
be changed if desired, in successive time-blocks, The
lengths of the time-blocks are set in amounts of thirty-

gecond-notes.

3.3 Parameter Generating Processes

Three general methods are presently available to
generate perametric content. Various aspects of their
techniques can be used alone or gimaltaneously within a
time-block, to achieve desired parametric configuration.
The logic involved in utilizing the following procedures
in a MUSICOL program, is fally discussed in Chapter 4.

w] B

3.3.1 Random Procesges

The random generator (see Appendix F) is used

to some extent in all parametric generation, with the
exception of the literals declarations. If no rank order
instructions are encountered in a time-block, or if any such
instructions are cleared (RANDOM, see 4.3.7 and 4.5.4.1},
total randomness is assumed (zeroth-order)., Hence, the
parameter(s) affected are gelected randomly from a complete
list of the pertinent mnemonics.

If a partial list isg desired for random selection,
those mnemonices may be listed within the time-block. In
the compositional process, only those in the declared list
will be eligible for selection by the random generator.
In addition, the elements of a declared list can be generated
randomly (see ROWGEN, 4.4.2). Thege elements would, in turn,
be chomen by the random process. TPurthermore, the-elements
of the declared list, whether they were determined by the
composer, or the random generator, can be ghifted about (see
SHUFFLE, 4.4.3). Thig shuffling procedure can be called
at any point in time, repeatedly, at the digcretion of the

compoger.

3.1.,2 Rank Order Distribution

A more sophisticated aspect of computer-assisted
composition constitutes the application of stochastic
methods for parametric selection. Each element belonging teo
a parameter-class is assigned a rank order, that is, a

percentage representing the probability of its occurrence.

w17=-

The most basic stochastic process in MUSICOL determines
the texture of the composition by means of a play/rest
ratio. Percentages of play/rest can be set inclusively for
21l instruments or for each individual one. If a play
probability of 75 pereent ie assigned, a 25 percent chance
of regt is automatic. To produce the percentages, the
random processor selects integers from one to one hundred.
Since all one hundred integers are equally probable in a
random situation, the specified percentages are derived by

adjusting the "play range™ accordingly.

Example 3.4

Play = 75% (Rest = 25%)

1 £1 <« 100
if T £ 75, Play option is triggered
if T > 76 and

I £ 100, Rest option is triggered

The elements of the deelared list (introdueéd in 3.3,1)
can be subjected to stochastic selection by the use of rank
order declarations. These proportional percentages are
chosen according to probability distributions as shown in

303!2.1 an.d 3.3.2.2.

3.3.2.1 Bagic Probability Digtribution

To generate probabilities for parametric
elemente in a string, the random process (3.3.1) ecan be
uged by repeating elements in accordance with their desired
rank distribution.

Since each element in a gtring receives equal

~18=

distribution, the re-occurrence of the same element will
increase its probability. In the following list:
(FFAB=BCD=-FBCBAC)
the pitech B (4 occurrences)

will have the greatest probability, 4/12 or 1/3, followed
by ¢ (3 oceurrences) with 3/12 or 1/4, then A (2 occurrences)
2/12 or 1/6, B-, D-, and P (one occurrence each) will have
the same probability, 1/12 each.

This process, of course, can be used successfully on
all MUSICOTY, parameter strings. The maximum list size of 24

elements allows a wide range of probability manipulations.

3.30.2.2 Zipf's Taw

Statistical analyses of gpoken anmd’
written languwages have always received the attention of
linguists, psychologists, and telecommunication engineers.
It ig clear that in the evolution of paradigmatic languages,
the syntactical changes were influenced by the frequency of
oceurrence of words, phrases, etec. Subsequently, those
words or phrases used more often eventually became shorter.

One of the more simplistic approaches to the -
gtatistical aspect of language economy is the "dot -~ dash"
code of Sammel Morse of 1832. Morse merely tabulated the
gquantities of the type letters found in a printer's office,
He then congtructed his code so that there was a direct
relationship between the brevity of the symbolic
representation and the quantity of type for each letter,
By establishing this hierarchy, Morse codified the English

«)9=

languege in messages using, on the average, the least amount
of syﬁbols.l

Observing Morse's original code and the way that
languages evolved, G. K. Zipf asserted that languages and
other behavioral forms were governed by what he called the
"Principle of Ieast Effort“.2 He believed that man, as a
goal-seeking being, will always attempt to minimize the
amount of work necessary to complete a tasgk, Thus, studies
measuring redundant elements in various systems should
result, hypothetically, in relatively uniform results,
Although Zipf experimented with this principle in many areas
of behavior, his work with languages stands out as the moat
relevent for musical parallels.

72ipf collected data comprising of a statistlcal word-
count of James Joyces' Ulysses as well as that of samples
from American newspapers. The elements (words) were listed
in the order of their frequency of occurrence, or rank -
oerdered, The results of these rank orders, plotied against
the frequency, show two relatively linear graphs.3 Ideally,
guch a graph is the basis for the generation of rank order
probabilities in MUSICOL. Hence, each guccessive rank order
is selected at a probability equal to the inversecéfilis

numher.,

Example 3.5

Rank orders: 1, 2, 3, 4499599911
Probability (P): 1/1, 1/2, 1/3, 1/4,,,,1/n

To ecalculate the relative probabilities (P), it is

necessary to multiply the inverse of each rank order number
by a constant (X), equal to the recdprocal of the sum of

elements 1/1 through 1/n, that is:

Example 3.6

n
k=1/7 2 (3.1)

1=1
if n = 5:
%%+%§+%%+%%+%% X K =1.0 (100%)
60
X =13

for individual prebabilities:

P.=1l/r x K (3.2)
Py = .438 or 43 .8%
P2 = L,219 e 21.9%
P3 = L145 14.5%
P4 = o111 11.0%
P5 = ,088 8.8%

Tn MUSICOL, the declared lists can be assigned rank
order numbers, The programmer decides which element is to

be the first. In the following:
(PPP PT MP FF ¥F PP P)
if PPP #s the firet rank order them:

(PPP FT NP FF MF PP P)
rank: 1 2 3 4 5 67

“21=

The first element of the string need not always be the

first order. Thus:
(PPP FT MP FF MP PP P)
if FF is the first order, then:

{PrP PT WP PF¥ WMF PP P)
rank: 4 3 2 1 2 34

In the last case, elements sharing the same rank order

number will also share the probability on a 50/50 basis.

Example 3,7

(PPP FFF VP MF FF PP P FT)
order: 4 3 2 1 2 34
Probabilities: P(MF)
P(MP) = ,11
P(FF) = .11
P(FFF) = ,0725

it
[]

s
)
(03]

P(PP) = .0725
P(PPP) = .055

P(P) = 055
P(FT) = ,088

To establish desired probabilities for elements, it may

be necegpary to repeat elements as needed.

Example 3.8

(MF PP WP PP P MP P WF)
orders: 4 3 2 12 34 5

Probabilities: P(PP) +438
P(MF) = .2525

P(FT) = L0725

A complete, detailed explanation of the implementation,

declaration and use of rank orders is contained in Chapter 4,

3.3.3 [ILiterals

fo inerease programming flexibility, exaet -~
gelection of parametric elements ig possible in MUSICOL.
If a declared list containg only one element, that element
will always be chosen. In a string, an element can be
declared ag the first rank order of one possible order,
Therefore, its probability is 1.0 or 100%. Specifie
durational lengths within time-blocks can be aspecified for
literals of any parameter for any individual instrument.
This frees the remaining time for that particular instrument
to be eontrolled by other declarations pertaining to the
affected parameter., (For programming infermation, see

4,41, 4.5.1.1, 4.5.4, 4.6,2 to 4.6.4,)

POOTNOTES, CHAPTER 3

L
Colin Cherry, On Human Communication, A Review, A Sur
and A GrifI"ism, The M, L.T. fﬁes;, GamBr{Hée Mass., ’
mg, pp. §6 - 37‘

-3 -

2bherry, loc. cit., Do 103,

3Cherry, loc. cits, pp. 103 - 108, The graph, and a clear
explanation are found here to clarify the discussion.

“24-
IV, MUSICOIL PROGRAMMING

Programming a musical composition in MUSICOL requires
the proper and orderly implementation of the operations
deseribed in this chapter. The operation types are
discussed in a suggested order for consideration, ranging

from the general to the specifie.

4,1 Title Field
Ag explained in 3.1.1, the title field follows the

START control statement. The composer has the option of
submitting a title, which will then appear at the heading
of the output.

§ ot
4.2 Time~Block Structure

The fundamenital structure of a MUSICOL program is the
time~-block. Whenever & change in a permanent declaration
is desired, a new block must begin., Any mimber of time-
blécks may be declared in a2 sequence during the course of a
MUSICOL program., Time ig specified in the number of the
measure plus the amount of 32nd notes. A decimal point
geparates the two fields which are preceded by the mnemonic

PIME. Therefore:
TIME = 3.8

denoctes the beginning of the
gecond quarter (after 8 - 32nd notes), of the third

messure, Likewise:

gpecifies the beginning of

the fourth measure,

The firat bleck of a program starts as either 1.0 or
0,8. The duration of the block is egual to the difference
of the two TIME declaratioms. All MUSICOL instructions
pertaining to that block must be digted=within the area
between the TINE statements. The last time-block simply
ends with a TINE declaration., Any code, other than control
atatements, located between the last TINE declaration and

the END statement will be ignored by the MUSICOL simulator.

Example 4,1

TIME = 1,00 TINSIG=4/4 QUARTER =60
duration FRQRANGE = 20 - 6F+ FIUTE =4C «6¢
11 1/2 bhars

@tCeoevoncocncnrnsee

TTHME = 11,16 (more code) etCevrscess

duration P P R R N Y X
19 1/4 bars

I O 3 B B O BE B N ORE B BN N AN J

TIM = 30.24 eta..‘.‘.‘..'.....l.l..‘

[N NN ENNENENNIERNNENENNSZ

S 2P RSB BETE NS

TIME = 60,00
END

4,3 Permanent Declarations

Permanent declarations are those that remain in effect

until changed, that is, they need not be reinstated in each

new time-bloeck. All the instructions discussed in 4.3, 4.4,
and 4,5 are of the permanent type. Permanent declarations

may be changed as frequently as needed,

4,3.,1 TIMSIG
To set the time signature the mnemonic TIMSIG is
uged, followed by the desired numerical values separated by

a8 gslash.

Example 4,2

PIMSIG = 3/2
TIMSTIG = 2/4
TTMSIG = 6/8 etc.

Since the smallest existing note value in MUSICOL is
the 32nd, the "denominator” cannot exceed 32, Any number
but zero ig acceptable as the "aumerator®, If TIMSIG is
not present in the first blokk, 4/4 is agsumed as the

initial meter.

4,3,2 ¥etronomiec Marking

Metronomice markings are specified by the note

value and the number of beats per minute,

Example 4.3

QUARTER = 56
HATP = 38
BIGHTH = 144 etc.

-2 T

Tf no initial metronomic marking is declared, QUARTER

= 60 is asgsumed,

4.3.3 FROBANGE

The fregquency range is the overall pitch range,
governing all instruments. The lowest and highest abgolute

pitches (see 3.2.,6) are separated by a dash.

Example 4.4

FRQRANGE = 20 = 6A+
TROQRANGE = 3G= - TB
FRQRANGE = 4D+ - SA etec.,
1f a pitch for any instrument is generated beyond the
limites designated in a FRORANGE instruction, it is transposed
by octave shifts urdtil it complies with the range. FRQRANGE

is not a mandatory instruction.

4.3.4 DYNRANGE
An optional DYNRANGE instruction is available
for overall dynamic range declaration. The limlts are
represented by dynamieimarkings., When no DYNRANGE n-. . w *1-v
instruetion is present, total availabllity of all dynamics

is agsumed.,

Example 4,5

DYNRANGE = PP - FF (includes PP, P
WP, MF, FT, FPF

DYNRANGE = MP - PP
fiide

-2 B
DYNRANGE = PPP - P etc.
Any dynamic marking selected out of range is changed

to the nearest dynamic limit.

4.3.5 NIRANGE

The optional overall durational range is

implemented exaetly like DYNRARNGE.

Example 4,6

NTRANGE = HATLF - 16mH (includes HALF,
QUARTER4, etce.
to 16%H)

NTRANGE = WHOIE - QUARTER+

NTRANGE = QUARTER+ - 32ND etec.

[

4.,3.6 Play/Rest
PIAY and REST are used in determining the play-
rest ratio, as deseribed in 3.3.,2. Either mnemonic may be
used to set the overall play/rest ratio. An asterisk

precedes the percentage number,

Example 4,7

PIAY * 75 (play: T75%, rest: 25%)
REST * 60
PLAY * 100 ete,

When no initial play/rest ratio is set, 50/50 is

antomatie,

4.3.7 RANDOM
To clear instruments of all previous gpecific

instructions except the voice number declaration (to be
degeribed in 4.5.1), 8 RANDOM instruction can be usged.
This randomizes all parametric selection, unless new
declarations are made after the random-clear operation.

The overall RANDOM instruction is somewhat limited
in that it can clear from one to all of the instruments
involved, but only in the order in which the instruments -
were originally declared, Thusg, if there are six
instruments and two are to be cleared, only the first two
in the order will be cleared. The assigned number (greater

than zero) is preceded by an asterisk in the ingtruction.

Example 4,8

RANDOM * 2
RANDOM * 16
RANDOM * 1 etc.

Tt is obvious that the general random instruction is
moat nseful for bulk random-=clearing. A more versatile

ugsage of RANDOM is described in 4.5.4.1l.

4,4 Parameter Strings

In order to select from picked:groupings of parametrie
elements, it is necessary to construct lists. These strings
are set up and changed liberally throughout a program and

may serve many functions (see 3.3.2.,1). There are three

=30

bagic operations used to manipulate them., All require the
use of parentheses as delimiters. Once the operation is
défined, parametric strings may be positioned adjacent to
one another, When code other than the three following
operations is interapersed, the correct operation code

must be repeated before continuing with more lists.

4,4,1 ORDERS
When parametric strings are to be determined
by the composer, the ORDERS declaration is used. The

declared lists will enter the simulator exactly as compiled.

Example 4.9

CORDERS(PPP WP PT WF P PP FF) (C D+ F G- A B~
P+) (SLUR SFFZ ARCO PIZZ NORMAL) (8VEl 8VE2
8VE3 8VE4 8VES) (WHOLE HALF QUARTER HATLP+
QUARTER HAILF+ EIGHTH QUARTER+)

Tf only one element is placed in a list, that element
ig the asle choice for the parameter represented (pro-

bability of 1.0 or 100%).

4.,4,2 ROWGEN
ROWGEN introduceg a random process (see 3,3.1)
to the seiection of elements. It is used to generate
astrings randomly in accord with the type and number of
elements specified. After the mnemonic ROWGEN, one of any
of the representative elements belonging to the chosen

parameter class is inserted., This is done merely to identify

the elass and has no influence on the selectien order, unor
does it insure the selection of that partieular element.

A number denoting the length of the list follows the
representative element, both of which are enclesed in

parentheses,

Example 4,10

ROWGEN (E 12) {(piteh)

ROWGEN (SPZ 3) (attack)

ROWGEN (WP 5) (dynamics)
(ete.)

4.4,3 SHUFFLE

Yet another usage of the random process (seé
3+3.1) iz found in the SHUFFLE operation, SHUFFIE simply
shiftas the order of elements in a parametric string that
was previously created by an ORDERScor ROWGEN-eperation.
The format of the SHUFFLE operation is exactly that - o
of ROWGEN., The representative element which defines the
clags is followed by a number indicating the amount of

elements in the list to be shuffled.

Example 4,11

SHUFFIE (B 12)
SHURPFIR (ARCO 2)
SHUFFIE (8VE2 5) etec.

Tt is not necesgsary to shuffle all of the elements in

a list, but shifting begins at the left, Thus, in the

following operations:

ORDERS (FFF MP FT MP P PP FF)
SHUFRIE(P 4)

only the first four
elements will be shuffled, allowing the final three to

remain intaect.

When a ROWGEN or SHUFFIE operation is encountered by
the simulator, the operation is executed immediately, and
a list of the new order of elements is printed out under
the "EXECUTION CONDITIONS" portion of the MUSICOL listing
(see Appendix B).

Although it is allowable to proceed with ORDERS
strings direetly after a ROWGEN or SHUFFLE declaration
without inserting the ORDERS mnemonie, ROWGEN and SHUFFLE

operations must be redeclared with each usage.

Example 4,12

ROWGEN (¢ 12) (PPP WF FT P MP FF)
(8VEL 8VE2 S8VE3 8VE4) SHUFFIE (8VEl 4) ROWGEN
(STUR 6) (NORMAIFT SULPONT MUTED GLISS FLUTTERTGE)

A zero can be inserted as the numeriecal value in a
ROWGEN or SHUFFIE instruction. This elears the
degignated parametric string from gimulation memory, and
control of that parameter falls to random process until

regpecified,

Example 4,13

ROWGEN (C 0)
SHUFFIE (SLUR O)
ROWGEN (PP 0) etc.

4;5 Instrument Declaration

A maximum of sixteen instruments i’ admissible at any
given time. Thig total includes those specified in the
operation code list (Appendix A) as well as those assigned
(gee 2.,1.2). An instrument is declared when the amount of

possible voices is agsigned.

4,5.,1 Voice Number

The voice number specifieation mugt be in the
firgt operation of any instrument declaration. Fallure to
do so will result in an error, with the issuancerof a
diagnosgtic., In the case of assigned instrument mmemoniecas,
the voice number may follow the replacement code., Any
number of voices from one to four can be agsigned for each

instrument. The voice number is encloged in parentheses,

Exampnle 4,14

viorA (2)
TRUMPET(1)
TNSTR1 = BASSFLUTE(1) ete.

For instruments capable of more than four simultaneous
attacks, another name for the instrument may be assigned

in addition. For keyboard instruments one declaration

~3 4

can be initiated for each hand, counting as two instruments
in the simulator. The piteh ranges are adjusted for each

hand (see 4.,5.2).

Example 4,15

PIANO(4)

INSTR1 = PIANOL(4)
or

INSTR1

INSTR2

HPSCHDL(4)
HPSCHDR{4)

4

4.5.1s1 Voice Number Rank Orders

On multiple voiced instruments, rank
order numbers may be assigned for selection of the amount
of voices per instance, according to Zipf's ILaw (see 3.3.2.1).
The voice number to be the first order is preceded by a
period, and the amount of possible orders follows an
agterisk, If any of these values exceed the declared

number of voices, an error is detected.

Example 4.16

FLUTE.1%2 (Selection: one voice is the
first order out of two
possible voices (1 and 2))

VIOLIN .2 *2
CELILO. 3 * 1 etc,

Declared parametric lists are not possible for voice
rank orders. Hence, rank orders are in numerical order, as

geen in Example 4.16,

=35=

4,5.,2 Pitch Range

Another mandatory declaration for each
instrument is the pitch range specification. The intended
range of the instrument is given in absolute pitches (see
3,2.6), as in FRQRANGE (see 4.3.3). Of course, here the

range ig prefaced by the ingtrument name,

Example 4,17

CLARINET(1) = 3E - 6G
VIOIA = 3C - 6C+
TUBA = 2B= = 44 etc.
No pitch range is declared for non-pitched instruments.
Care should be taken when using instrumental range
declarations in conjunetion with FRORANGE to avoid
cancellation of the resultant piteh range. In the

following operations:

FRORANGE = 2C =~ 3F+
VIOLIN = 3G = TA

the narrowest range
prevails in order to comply with both statemenis. That is
to say that any pitch above 3F+ or below 3G cannot be
gelected, an impossible situation. If this type of error

is encountered, a diagnostic is provided,

4.5.3 TInstrument Play/Rest Ratio

The play/rest ratio for specific instruments is

employed in the identical manmer of the general play/reast

36

(see 4.3.6). The statement however, is linked %o the
inztrument by an equal sign. The absence of this optional
statement will assign control to the general ratic for the

instrument.

Example 4,18

OBOE = PILAY * 75
VIOLA = REST *60
TRO¥BONE = PIAY * 100 etc.

4,5.,4 TIndividual Rank Order Specifications

The ability to set rank orders for individual
parameters of each instrument exists in MUSICOL as a-
voluntary instruction. Rank orders of parametric elements
can be specified only when a declared list for that
particular parameter istresent (gee 3.3.2,1, 4.4 - 4.4.3).
The element chosen for the first order is entered with the
amount of possible rank orders following. An asterisk

geparates the two values.

Example 4,19

(in commection with Ex. 4.12)

OROE = 8VE4*1 = FT*3 =FLUTTERTGE * 1
CONTRABASS = D+ *7 =PPP*2=8VE1*2
= MUTED*2
etc.

When an element is declared as the only rank order

(guch as 8VE4 * 1) its probability is 1.0 or 100%. Thus,

-3 T

the programmer can agsert total control over sgelectiom if
degired,

Since individual rank order declarations are permanent,
they remain in effect until changed. If a respecification
of orders is not desired, a zero may be inserted ag the
numerical value, erasing the goverming rank orders
ingtruction from simulation memory. A random process then
prevails in the selection of elements from the parametric

s‘bring.

Example 4,20

CONTRABASS = D * 0 = P*0
OBOE NORMALT *0
HARP = GLISS *0 ete.

If the element being assigned as the first order
does not exist in the parameter string, an error will be
ineurred. The diagnostie will locate the time-~block
containing the error and identify the instrument and

erroneous element,

4.5.,4.,1 Random Clear

An easy, quick way to clear individual
instruments of all permanent 'declarations, except voice
number and pitch range, is to use the RANDOM-clear
instruction. This renders random control to all parametric
gelection for the instrument. Vew declarations can be

enlisted directly afterwards, where desgired., When the RARDOM

=38

mnemonie is encountered by the gimulator, it is immediately

executed,

Example 4.21

(in connection with Ex. 4.19)

OBOE = RANDOM
CONTRABASS = RANDOM =8VE2 *1 =PPP %2
= PIAY * 33

In the preceding example, the simple statement:
OBOE = RANDOM is equivalent to OBOE =8VE4 ¥*Q = FT * 0O
= PLUTTERTGE * 0 = PIAY %50, eic., a more cumbersome

operation,.

4.5,5 Ingstrument Deletion and Replacement

When the composer wishes to terminate the use
of an instrument, or have it rest for a very lengthy period
of time in a piece, a deletion statement may be employed.
Thie gaves MUSICOL execution and output time, as the
compositionaliprocess for the instrument otherwise
continues to output rests. The ingtruction for deletion
gimply incorporates the END mnemonic with the instrument.

name ,

Example 4,22

VIOLA = END
OBOE = END
CONTRABASS = END etc.

-39

The instrument can be redeclared later, if needed, by the
standard procedure (as in 4.5 et gegue),

In the case of replacing one insirument with another
at the same peint in time, a time-saver statement is
available to eliminate gtateménts of deletion and
declaration. The new instrument inherits all the special
ingtructions of its predecessor. The new name 1is placed
to the pright of the old one, in the instruetion. 4n equal
sign separates the two. All ensuing declarations must

pertain to the new instrument-name.

Example 4.23

OBOE = CTARINET
VIOIA = CELLO = 2C = 4G = ...(etc.)

LR S I I I

CELIO = PP¥1l = B*5 etc,

4.6 Temporary Declarations

A temporary declaration is one that remains effective
only for a specified length or the duration of the time-
block in whieh in occurs., As in all types of declarations,
control by temporary instructions commences at the
beginning of the block. When the designated time expires,
control is resumed by permanent, or new temporary

ingtruections.

4,6,1 General Rank Declarations

Tor overall rank-ordered designations the
instruction is similar to the instrumental permanent
declaration (see 4.5.4), however the name of an instrument
is not needed, Also, the numerical order number is non-
functional, so any integer may be inserted (1 is suggested).,
Hence, all elements available in a parametric string will
be assigned order numbers, given the mnemonic of that which

ig to0 be the first.

Example 4,24

PIZZ * 1
vpP *1
WHOLE * 1 etec.
The general rank order declarations govern all
ingtruments having no permanent order specification for

the featured parameter,

4,6.2 Accelerando and Ritardando (ACCEL, RITARD)

Gradual changes in tempi are easily implemented
by the use of ACCEL and RITARD statements. The desired
instruction includes the correct mnemonie, the eventual
metronomic marking, and the length of the process in 32nd
notes. A period is located in between the latter two

values, to denote literal length.

Fxample 4.25

ACCEL = 120 ,128 {16 Quarters)

-d L

ACCEL =144, 108 etc.

The length may be greater or less than the duration
of the time block in which it is present, but iIn no case
should exceed 4095, The output results are seen in

Appendix B.

4.6,3 Crescendo and Diminuendo (CRESC, BIMTN)

™wo types of instructions exist for crescendi
and diminuendi, those for the entire group, and those for

individual instruments.

4.,6.3,1 Overall Crescendi and Diminuendi

The format of thig instruction is
identical %o that of ACCEL and RITARD (see 4.6.2), the only
difference being that the dynamic goal is placed in

between the mnemonic and the length in 32nd notes.

Example 4,26

DIMIN = MP . 122
CRESC = FF,.80
DIMIN = PP. 256 etc-

A1l other individunal instructions concerning dynamics

are nullified for the length of 2 CRESC or DIMIN stipulation.

4.6.3.2 TIndividvual Crescendi and Diminuendi

The DIMIN or CORESC mnemonics in 4.6.3.1

42

are replaced by the instrument-name to individualize
gradual dynamic change. Whether the operation is a
erescendo or diminuendo is determined antomatically by the
simulator through a comparison of the existing dynamic and

the projected one, for the instrument.

Example 4.27

VIOLA = MP.64
INSTR1= PF, 512
PERC1 = FT ,38 ete,

4.6.,4 Titeral Iengths of Parametric Elements

Specific elements can be chosen at any time for
any duration (not exceeding 4095) by the composer. Again,
the format is identical to the previous instructions, the
chosen element placed in the second field (after the equal

Sign) -

Example 4,28

VIOLIN = COLLEG .8
FLUTE = FLUTTERTGE,32
INSTR2 =XTRAl .88 etc.

4,7 Iinking Together Tnstrument-Ingtructions

It is convenient to group together all instructions
which pertain to the same instrument #n a time-block.
When this ie done, the instrument-name: need only be listed

once as the heading of the group. This aids the composer

43

during the programming and debugging stages by expediting
the location of specific instructions. Also, compilation

time is redueced,

Example 4,28

BASSOON(1)=2C=5C=PTAY*70=8VE*3=XTRAL
*2 =NORMALT *1 = MP¥4 =B=- %12
= QUARTER * 6

VIOLIN(2) ,1%2 = 3G = TC =PLAY *55
= (%*10=NORMAIT * 1 =SULPONT.8
=pPF ¥h = MP.32 = ARCO *1=HATF*3

(ete.)

4.8 Programming logic: Basic Compositional Layout

It is suggested that the sample programs listed in
Appendix B be gtudied thoroughly before attempting to
program a composition in MUSICOL. They can provide bagice
hints that will increase the programmer's accessibility
to the features of the language. Carefully planned
program~logic will curtall excess program Tuns, reduce
redundancy, and hasten the realization of the composer's
mugical intentions,

The composer's personal compositional atyle is not
threatened by MUSICOL programming, because the layout of
the piece is flexible to individual concepis. If an over<
all length, texture, and instrumentation ig originally
planned, then a complete skeletal program can be

constructed initially. On the other hand, if the

i hm

compositional plan is a gectional one, the piece can be
programmed and run section by section, Of course, a
blending of both techniques is possible and expected.
Increased programming sophistication is commensurate with
the interpretation of MUSICOL output, and the achievement

of musical goals.

Ve MISICOL PRINT-QUT INTERFRETATION

As seen in Appendix B, three stages of printed
material result from the submission of a MUSICOL program.
The compilation and simulation listings, briefly described
in 1.1.2 and 1.1.3, are invaluable for reviewing the logieal
process, and for debugging. The output (musical
realization) is the most important end result, and the
final determinant of the composition's completion. The
purpose of this chapter is to discuss the basics of
debugging and output interpretation.

5.1 Debugging
The MOSICOL error systems are thorough and clesr.

Each error is issued in order of oceurrence, All errors
are fatal to the extent that the program will not proceed
to the next level of execution. Thus, if errors are
incurred at the compilation stage, the program ls aborted,
never entering the simumlator. When simulation errors are
detected, the compesitional process terminatesg immediately,
but the remaining preliminary simulation steps continue.
Afterwards, the output file is dumped, producing the
composed material, if any.

Although error messages are essentially self-
explanatory, a coneise explanation is given for each one

in the error listings in Appendix.C.

5.1.,1 Compilation Errors

46

A11 compilation diagnostics are numbered and
are printed immediately on the line following the erroneous
code, In some cases the location is given as a reference.
As stated in 3.1.3, the compiler-dump is automatically
switched on for the remainder of the listing. The error
fields in the octal-representations are filled with T's.

In most cases, one error may trigger a series of ensuing
errorz which would otherwise seem correct. Usually when
an error cannot be logically rationalized, it is the result
of one previously incurred. Appendix D contains a MUSICOL
listing with compilation errors. (compilation dump is=

switched-on automatically)

5ele? Simulation Errors

Simulation diagnostics are not numbered like
those of the compiler, but are similarly outlined with
agterisks, The location of the infraction is always given
by reference to the location-counter if it occurs in the
simulation stage. The time-block is identified when an
error is incurred during execution. Because simulation
errors usually involve faulty programming logic, a closer
gerutiny may be necegsary to correct them, As in the
compiler, confusing errors may stem from a previous one,
Thus, & single correction of the initial error could

clear subsequent ones,

Fele3 Simulator Dump

47—

In the event of a stubborn problem in MUSICOL
logic, a simulator dump is triggered on by the occurrence
of simulation errors. The contents of simmlated memory-
locations are dumped (listed) for each time=block in which
diagnostics are issued. Specific (individual) declarations
are listed first,

The instruments are represented octally in the order
that they were declared, under the "Instrument® designation.
A1l other control factors in effect for that time-block
are similarly listed for each instrument under the
appropriate heading (Voices, Piteh, Attack, Duration,
Dynamics, Octave Range, Timbre, Special Actions,
Tiistrumental Piteh Range, Play/Rest ratio, Iiteral Action).
If rank orders or literal lengths, etc., are applicable,
the octal words are divided into four-digit groups.

general declarations (i.e. Pitch Range, Dynamic
Range, Time Signature, Play/Rest ratio, Special Iiteral
Aetions, and lMetronomic Marking) are listed similarly, but
the 16-digit words are mometimes split into groups of
eight, instead of four., For example, 4/4 is represented
as 0000000400000004 under the time signature heading. A
complete sitructural breakdown of the words is listed in
Appendix D.

Existing "Orders Strings” are labeled and listed
geparately., If rank order-numbers are in effect at the
exact moment of the infraction, they will show in the

rightmost four digits of the words representing the

48w

gpecific parameter sirings., Appendix D contains a sample

1iéting with a simulation-memory dump.

5.2 Composition-Output-IListing

The actual listing of the composition, programmed in
MUSICOL, is clearly printed for easy transcription. The
total duration is approximated by the time signatures in
conjunction with the metronomic markings throughout the
piece. The parameters and actions are listed under the
appropriated columng. "SPEC 1" and "SPEC 2% list overall
meregcendi® or "diminuendi" and "accelerandi” er
npitardandi® respectively., A mnemonic listed in a column
remaing in control until a new one appears. Dashes
indicate that a "crescendo, diminuendo, accelerando%, or
*pitardando” is in operation.

The "POSITION" column conveniently desgignates at what
point in time an event (articulation) beging. The bar,
beat and subdivision numbers are listed chronologically.
The subdivision values refer to the beginning of the
32nd-note location specified.

BExample 5.1

BAR 1 BEAT 1 + 1

Beginning of the first
meagure.,

The beginning of the
quarter-note after the
2nd beat of bar 2.

H

BAR 2 BEAT 2 + 9

(etc.)

4 G-
Often, near the end of a time-block, the chronology
may be broken because an instrument, very close to being

completed, is allowed to finish before the control returns

to the next instrument furthest from completion.

~50-

VI. PROPOSED MODIFICATIONS (VERSION 2)

Although there is a great degree of flexibility in
MUSTICOL which is advantageous for a composer who programsg
in it, some obviouns limitations do exist. In the future,
an improved MUSICOL, Version 2, will further expand the
versatility of the language by introducing new features,
thus eliminating many of the present shoritcomings. This
chapter discusses a few of the more important limitations
to be dealt with in Version 2.

Harmony in Version 1 is essentially a by=-product of
the specified linear structures taken vertically. A
compomer is able to influence the selection of types of
harmonies by carefully manipulating pitch and rhythmie
distributions, but a new procedure must be developed %o
allow direct access 16 controlling vertical simultaneities.
Also, there is no initial relationship between parameters,
that igs to say, the choice of one element in a given
parameter class {(i.e. duration) will have no contrel over
the choice in another type (i.e. attack). Such a feature
18 asthetically important, ag this concept is quite relevent
to successful musicallity.

Degired probability distribution can be programmed
quite easily in the present version, as shown in 3.3.
However, more sophisticated principles like Zipf's law,
namely those like Xenakis' and Iching (as programmed by L.
Hiller) could be implemented as a VUSICOL operation, to

avoid the compeser's involvement with complicated
mathematics, should he attempt to program the distributions
himself (i.e. as in 3,3.2.1).

There are geveral existing MUSICOL mnemonics that are
not yet implemented. Most of them depend on manipulation
of material already composed. A sgearch and store program
will be developed to make composed material accessible.

Finally, the "timbre" and attack functions will be
redigtributed into three groups, so that & more flexible

gelection of elements is possible,

